【寄语】2022高考数学试题全国卷及答案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。
一、选择题
15AABDA 610ACBCC
二、填空题(本大题共5小题,每小题5分,共25分。把答案填在题中的横线上)
11.5 12. 13、(1,+)14. 15.①,④
三、解答题(本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤)
16、(本小题12分)
解析:ab=x2+x-x2=x.
不等式即是x+2m
(x+2) 0 x(x+2)(x-m)0
① 当m=-2时,原不等式 x(x+2)20;
② 当m-2时,原不等式 m0.综知m-2时,x的取值范围是(0,+)
17、(本小题满分12分)
1、适度运动。
临考前夕,学生大都不爱运动,主要是学习紧张没时间运动。但我还是希望同学们能根据自己的情况,适度运动,比如散步、跑步、打一会儿球,或跳几分钟绳,或在阳台上做一会儿操,等等。这样,可以缓解紧张的神经,提高学习效率,保证考试时有一个健康的身体和清醒的大脑。
2、适度交流。
同龄人一起迎考,大家的情况都差不多,同学间适度交流,进行感情沟通是十分重要的。同学之情对增强信心、减缓压力有很大的帮助。当然,考前时间宝贵,切不可长谈。除了和同学交流外,还可与老师、家长、亲友交流。
3、充分准备。
认真做好考前的复习和准备工作,注重知识的掌握和技能的训练,做到胸有成竹,心中不慌,从而预防考试焦虑的产生。
4、处变不惊。
训练自己在面对变化的问题或学习的困难时,能冷静地进行分析、判断,采取科学的应对措施。比如,面对试题的难易,要有“人难我难,我不怕难;人易我易,我不大意”之心态。
5、防止疲劳。
考试临近,切忌搞疲劳战术,过度疲劳容易引起心理上的不适感,不利于考试时水平的发挥。
一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知全集U和集合A,B所示,则 = ( )
A.{5,6}
B.{3,5,6}
C.{3}
D.{0,4,5,6,7,8}
2、复数 的共轭复数是( )
A.-1-i B.-1+i C. D.
3、等差数列 满足: ,则 =( )
A. B.0 C.1 D.2
4、已知函数 是定义在R上的奇函数,当 ,则 的值是( )
A. B. C. D.-8
5、下面是电影《达芬奇密码》中的一个片段:女主角欲输入一个由十个数字组成的密码,但当她果断地依次输入了前八个数字11235813, 欲输入最后两个数字时她犹豫了,也许是她真的忘记了最后的两个数字、也许。请你依据上述相关信息推测最后的两个数字最有可能的是 ( )
A.21 B.20 C.13 D.31
6、已知实数a、b,则 是 的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
7、已知函数 ,则下列区间必存在零点的是 ( )
A. B. C. D.
8、设函数 在 处取得极值,则 的值为( )
A. B. C. D.4
9、设 ,则有 ( )
A. B. C. D. 的大小不定
10、已知函数① ② ;③ ④ 其中对于 定义域内的任意一个自变量 ,都存在唯一一个自变量 ,使 成立的函数是( )
A.①②④ B.②③ C.③ D.④
二、填空题(本大题共5小题,每小题5分,共25分。把答案填在题中的横线上)
11、已知 ,则 = 。
12、由直线 , , 与曲线 所围成的'封闭图形的面积为 。
13、规定符号 表示一种两个正实数之间的运算,即a b= ,a,b是正实数,已知1 =3,则函数 的值域是 。
14、已知 且 与 垂直,则实数 的值为 。
15、给出下列四个命题:
①已知 都是正数,且 ,则 ;
②若函数 的定义域是 ,则 ;
③已知x(0,),则y=sinx+ 的最小值为 ;
④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则 的值等于2.其中正确命题的序号是_____。
三、解答题(本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤)(本小题12分)
16、已知a=(1,x),b=(x2+x,-x)m为常数且m-2,求使不等式ab+2m 成立的x的范围。
17、(本小题满分12分)
在 中,角A、B、C的对边分别为a、b、c,且满足
(I)求角A的大小;
(II)若 ,试判断 的形状,并说明理由。
18、若实数 、、满足 ,则称 比 接近。
(1)若 比3接近0,求 的取值范围;
(2)对任意两个不相等的正数 、,证明: 比 接近;
19、(本小题满分12分)
等差数列 中, =4,其前n项和 满足
(I)求实数 的值,并求数列 的通项公式;
(II)若数列 是首项为 、公比为 的等比数列,求数列 的前n项的和
20、(本小题满分13分)
已知函数 (其中 )
(I)若函数 在点 处的切线为 ,求实数a,b的值;
(II)求函数 的单调区间。
21、(本小题满分14分)
。在一次人才招聘会上,有A、B两家公司开出它们的工资标准:A公司允诺第一年月工资数为1 500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2 000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A、B两家公司同时录取,试问:
(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别为多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素)该人该选择哪家公司,为什么?
你也可以在搜索更多本站小编为你整理的其他2022高考数学试题全国卷及答案精品多篇范文。
文档为doc格式